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Abstract The problem of simultaneous identification of the thermal conductivity
�(T ) and the asymmetry parameter g of the Henyey–Greenstein scattering phase
function is under consideration. A one-dimensional configuration in a grey partici-
pating medium with respect to silica fibers for which the thermophysical and optical
properties are known from the literature is accepted. To find the unknown parame-
ters, it is assumed that the thermal conductivity �(T ) may be represented in a base
of functions {1, T, T 2, . . ., T K } so the inverse problem can be applied to determine
a set of coefficients {�0,�1, . . ., �K ; g}. The solution of the inverse problem is
based on minimization of the ordinary squared differences between the measured and
model temperatures. The measured temperatures are considered known. Temperature
responses measured or theoretically generated at several different distances from the
heat source along an x axis of the specimen set are known as a result of the numer-
ical solution of the transient coupled heat transfer in a grey participating medium.
An implicit finite volume method (FVM) is used for handling the energy equation,
while a finite difference method (FDM) is applied to find the sensitivity coefficients
with respect to the unknown set of coefficients. There are free parameters in a model,
so these parameters are changed during an iteration process used by the fitting proce-
dure. The Levenberg– Marquardt fitting procedure is iteratively searching for best fit of
these parameters. The source term in the governing conservation-of-energy equation
taking into account absorption, emission, and scattering of radiation is calculated by
means of a discrete ordinate method together with an FDM while the scattering phase
function approximated by the Henyey–Greenstein function is expanded in a series of
Legendre polynomials with coefficients {cl} = (2l + 1)gl . The numerical procedure
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proposed here also allows consideration of some cases of coupled heat transfer in
non-grey participating media. The inverse method may be treated, after performing a
suitable validation, as an alternative method in relation to other classical measurement
methods for investigation of thermophysical parameters of solid states.

Keywords Insulation materials · Inverse method · Radiative properties ·
Thermal conductivity

1 Introduction

Identification of thermophysical properties of fibrous insulating materials like silica
wool by using an inverse method is a challenging task. First, this is because of the
complexity of the mathematical formulation of the problem in which various heat
transfer modes should be taken into account to obtain a physically correct temperature
distribution inside the medium. Second, the inverse methods belong to the class of
ill-posed problems in a Hadamard sense, meaning that the solution may not exist, or
may not be unique, or small errors in the initial data can result in much larger errors
in the answers. To minimize the drawbacks of the ill-conditioned inverse problems,
two main mathematical approaches are commonly used: The Tikhonov regulariza-
tion method and iterative regularization method [1–3]. With reference to classical
methods of determining thermophysical properties of materials, the inverse methods
can be used to estimate simultaneously from a single experiment a few parameters,
e.g., the thermal conductivity � and volumetric heat capacity (ρcp), which can be
also temperature dependent [4,5]. In the literature, there are many papers devoted to
the solution of inverse heat conduction problems, but there are considerably fewer
papers dealing with identification of thermophysical and/or optical parameters gov-
erning transient heat transfer involving radiation and conduction. Liu et al. [6] used
discrete ordinate method (DOM) to solve the direct problem (DP) in one-dimensional
semitransparent plane-parallel media with opaque and reflecting boundaries and then
the conjugate gradient method (CGM) to determine the inhomogeneous source term
from the specified incident radiation intensities on the boundaries as a result of an
inverse problem solution. Li [7] studied an inverse conduction–radiation problem for
simultaneous estimation of the single scattering albedo ω0, the optical thickness τ0,
the conduction-to-radiation parameter N , and the scattering phase function from the
known exit radiation intensities. The DP was solved using the method of spherical
harmonics pN - approximation [8, Chap. 15], while the CGM was used to solve the
inverse problem. A genetic algorithm was used by Li and Yang [9] to solve an inverse
radiation problem for simultaneous estimation of the single scattering albedo ω0, the
optical thickness τ0, and the phase function from a knowledge of the exit radiation
intensities.

In this paper, an inverse approach, based on the Levenberg–Marquardt minimization
method [1], was used for simultaneous identification of the temperature-dependent
thermal conductivity �(T ) and the asymmetry parameter g of the Henyey–Green-
stein phase function for the case of one-dimensional transient radiative–conductive
heat transfer in a semitransparent plane-parallel medium.
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Fig. 1 Physical model of the conductive–radiative heat transfer in a planar slab

2 Problem Formulation

Transient coupled conduction and radiation heat transfer are considered in a fictitious
insulation material characterized by thermophysical and optical properties typical for
a fibrous insulation made of silica fibers and air with a medium density ρ of 20 kg ·m−3

and a specific heat cp = 670 J · kg−1 · K−1 [10].

2.1 Direct Problem

To find a solution of the direct problem schematically presented in Fig. 1, the following
simplifying assumptions were accepted:

– Transient heat transfer by coupled conduction and radiation is considered only in
a one-dimensional plane-parallel medium of thickness E

– The medium is homogenous, semitransparent, and grey for wavelengths between
1µm and 100µm

– The boundaries of the slab are diffusely emitting, absorbing, and reflecting thermal
radiation with constant emissivity ε1 = ε2 = 0.9

– Heat conduction within the medium is governed by the temperature-dependent
thermal conductivity, �(T ), and by the constant volumetric heat capacity, ρcp

– Transport of thermal radiation through the medium is due to absorption, emission,
and anisotropic scattering

– The radiation intensity I (x, µ; t) does not depend on the polar angle ϕ

(see [8, p. 426])
– The scattering phase function P(µ′ → µ) is given by the Henyey–Greenstein

phase function with the asymmetry parameter g
– The refractive index n of the medium is equal to 1 (see [10])
– Initially at time t = 0, the slab is in a state of thermodynamical equilibrium with

surroundings at a constant temperature Tg1 which equals T (x, 0) = T0 = Tg1 =
300 K
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– Radiation heat flux qr1 is generated by the hemispherical surface of the blackbody
of constant temperature Tb,1 = 400 K incident upon the face x = 0 of the slab
within the time interval 0 < t < th, where th is the time of heating

– There is free convection of constant heat transfer coefficients h1 = 5 W ·m−2 ·K−1

at the face x = 0 of the slab while its face x = E is adiabatic
– The mean values of the absorption and scattering coefficients are σa = 711 m−1

and σs = 1861 m−1, respectively

Mathematically, the direct problem in which all the thermophysical and optical prop-
erties of the slab are regarded to be known can be described in the following way:

– The governing conservation of energy equation is given by

ρcp
∂T

∂t
= ∂

∂x

(
�(T )

∂T

∂x

)
− ∂qr

∂x
, 0 < x < E, 0 < t ≤ tf , (1)

T = T (x, t), qr = qr(x, t)

where ∂qr(x, t)/∂x stands for the source term which represents the divergence of the
radiative flux qr defined by

qr(x, t) = 2π

λmax∫
λmin

µ=+1∫
µ=−1

Iλ(x, µ; t)µdµdλ (2)

involving the spectral radiation intensities Iλ(x, µ; t) which are determined from the
radiative transfer equation (RTE),

1

c

∂ Iλ
∂t︸ ︷︷ ︸

=0

+ µ
dIλ
dx

= σaλ(µ)Ib,λ(T ) − βλ(µ)Iλ + 1

2

+1∫
−1

σsλ(µ
′)P(µ′ → µ)Iλ(x, µ′; t)dµ′

(3)

0 < x < E, 0 < t ≤ tf , µ ∈ [−1, 0) ∪ (0,+1],
λ ∈ [1, 100] × 10−6 [m], Iλ = Iλ(x, µ; t), T = T (x, t)

In Eq. 3, βλ is the monochromatic extinction coefficient and is a sum of the absorption
and scattering coefficients, Ib,λ(T ) is the monochromatic intensity of the blackbody
at the absolute temperature T which can be expressed as [8,10]

Ib,λ(T ) = 1

π

2πhc2

n2
λλ

5
[
exp

(
hc

nλλkT

)
− 1

]

= 1.191 × 10−16

n2
λλ

5
[
exp

(
1.4388×10−2

nλλT

)
− 1

] , [W · m2 · sr−1], λ [m], T [K] (4)
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where nλ is the monochromatic refractive index of the medium which is equal to unity
in this paper, the coefficient c denotes the speed of light c = 2.998 × 108 m · s−1, and
k = 1.380 × 10−23 J · K−1 is the Boltzmann constant. The scattering phase function
P(µ′ → µ) is approximated by the Henyey–Greenstein phase function PHG(cosθ)

[8] which can be expanded in a series of Legendre polynomials Pn(cosθ) as

P(µ′ → µ) ∼= PHG(cos θ) = 1 − g2(
1 + g2 − 2g cos θ

)

= 1 +
m∑

l=1

(2l + 1)gl Pl(µ
′)Pl(µ) (5)

where µ = cosθ is the direction cosine.
The uniqueness of the problem solution given by Eqs. 1–4 requires a knowledge

of initial and boundary conditions. In the case of a combined transient conduction
and radiation heat transfer problem, the initial and boundary conditions have to be
specified for the temperature field while the boundary conditions are necessary for
RTE only. It is assumed in this paper that the face x = 0 of the slab is semitransparent
for wavelengths of 1 µm < λ < 5 µm and opaque for 5 µm < λ < 100 µm while
the face x = E is opaque for all wavelengths in the interval 1 µm < λ < 100 µm.
In addition to this, there is free convection at the face x = 0 with a heat transfer
coefficient h1, and at the face x = E , it is treated to be adiabatic. Moreover, for time
0 < t < th, the face x = 0 of the slab is heated by the hemispherical surface of the
blackbody of constant temperature Tb,1 = 400 K. Hence, we have the following initial
(IC) and boundary (BC) conditions for the temperature field:

IC: T (x, 0) = T0 for x ∈ [0, E] (6)

BC: at the face x = 0

�(T )
∂T

∂x

∣∣∣∣
x=0

= h1(T − Tg1) +
λ=100 µm∫
λ=5 µm

ε1π Ib,λ(T − Tg1)

∣∣∣∣
x=0

dλ

+(1 − ε1)

λ=100 µm∫
λ=5 µm

π Ib,λ(T = 400 K)dλ (7)

BC: at the face x = E − �(T )
∂T

∂x

∣∣∣∣
x=E

= 0 (8)

The boundary conditions for radiation intensities (see [11, p. 548])

BC: at the face x = 0
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Iλ(0, µ, t) = ε1 Ib,λ(T (0, t)) + τ ′
λ=5 µm∫

λ=1 µm

Ib,λ(T = 400 K)dλ

+ 2ρd
1

0∫
−1

Iλ(0, µ′, t)µ′dµ′, µ > 0 (9)

where τ ′ is the transmissivity and ρd
1 stands for the diffuse reflectivity at the face

x = 0 of the medium.

BC: at the face x = E,

Iλ(E, µ, t) = ε2 Ib,λ(T (E, t)) + 2(1 − ε2)

+1∫
0

Iλ(E, µ′, t)µ′dµ′, µ < 0 (10)

2.2 Inverse problem

In the inverse problem, the thermal conductivity �(T ) and the asymmetry parameter
g are unknown, but there are known temperature histories Yi (tn) measured at some
locations {x = xi : i = 1, 2, . . ., NMP} of the sample for discrete times {t = tn :
n = 1, 2, . . ., Nt} of a simulated experiment. Assuming that the unknown thermal
conductivity �(T ) can be represented in a base of functions {1, T, T 2, . . ., T K } as

�(T ) = �0 + �1T + · · · + �K T K (11)

then the parameters to be identified are searched in a form of the vector ũ with
components

ũ = [�̃0, �̃1, . . . , �̃K ; g̃]T (12)

which can be found by minimizing the objective function J as the sum of the squared
residuals defined as

J (ũT ) =
NMP∑
i=1

Nt∑
n=1

[Tcal(xi , tn, ũT ) − Yi (tn)]2 (13)

where Tcal(xi , tn; ũT ) and Yi (tn) are the temperatures calculated from DP (Eqs. 1–10)
upon the fixed vector ũ (for a current iteration number (s)) and the measured values
from a simulated experiment, respectively [4,5].

Due to the strong nonlinearity of the boundary-value problem given by Eqs. 1–10,
the minimum of the objective function J—Eq. 13, can be found iteratively. Assuming
the initial values of the components of the estimated vector ũ as ũ(0), then the iterative
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procedure of minimization of the objective function J can be written conveniently in
matrix form as [1]

ũ(s+1) = ũ(s) +
[
XT (ũ(s))X(ũ(s))

]−1
XT (ũ(s))[Tcal(ũ(s)) − Y] (14)

where s is the successive number of the iteration, and XT (ũ(s)) denotes the transposi-
tion of the matrix of sensitivity coefficients with elements Xinj defined as

Xinj = ∂Tcal(xi , tn; ũT )

∂ ũ j
,

i = 1, 2, . . . , NMP; n = 1, 2, . . . , Nt; j = 0, 1, . . . , K + 1 (15)

and [Tcal(ũ(s)) − Y] is the residual vector with components arranged as follows:

[Tcal − Y] ≡ [T (x1, t1) − Y1(t1), . . . , T (x1, tNt ) − Y1(tNt ), . . . , T (xNMP, t1)

−YNMP(t1), . . . , T (xNMP, tNt ) − YNMP(tNt )]T (16)

The sensitivity coefficients (Eq. 15) can be calculated either by solving the sensitivity
problem with respect to DP [1] or by using a finite difference scheme which has been
carried out in this paper. The central difference scheme applied here can be written as

Xinl = Tcal(yi , tn; ũ1, . . . , (ũl + δũl), . . . , ũK+1) − Tcal(yi , tn; ũ1, . . . , (ũl − δũl), . . . , ũK+1)

2δũl

+O(δũ2
l ) (17)

where δũl = E P S · ũl , E P S ∈ [10−5, 10−3]. It has been recommended by Minko-
wycz et al. [2, p. 450] to calculate the sensitivity coefficients as

Xinl = Im[Tcal(yi , tn; ũ1, . . . , (ũl + i · δũl), . . . , ũK+1)]
δũl

+ O (δũ2
l ) (18)

where Im[·] stands for the imaginary part of the estimated temperature Tcal(·) and
i = √

( − 1) is the imaginary unit. The better performance of the scheme of Eq. 18
over the scheme of Eq. 17 gives, in fact, that the relative error in Eq. 18 is independent
of applying a step size δũl .

The iterative procedure of minimization of the objective function J (Eq. 14) is
realized by the Newton–Gauss method so its convergence is dependent on an initial
choice of the starting point ũ(0). If, for example, the estimated values ũ(0) has been
chosen too far away from the exact solution, then in the subsequent iteration, the
new solution moves away from the exact solution and the iterative procedure (Eq. 14)
becomes divergent. On the other hand, if there are columns of the matrix of sensitivity
coefficient X which are nearly linearly dependent on each other, then the matrix [XT X]
becomes singular (determinant det[XT X] = 0 for a given computer precision) and it
is impossible in such a situation to calculate the inverse [XT X]−1 which leads finally
to the divergence of the iterative procedure (Eq. 14). To diminish the influence of these
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effects on the procedure convergence and stability, the Levenberg–Marquardt method
[1] is recommended and was used in this paper. The modified procedure (Eq. 14) can
be written in the following form:

ũ(s+1) = ũ(s) +
[
XT (ũ(s))X(ũ(s)) + γ (s)I

]−1
XT (ũ(s))[Tcal(ũ(s)) − Y] (19)

which differs from Eq. 14 by adding a stabilization term γ (s)I, where I is the identity
matrix, and γ (s) denotes the damping parameter that is getting smaller if the value of
the objective function at iteration (s + 1) is less than at iteration (s), and vice versa.

An accepted measure of the linear dependence of the columns of the matrix
[XT X+γ I] are the correlation coefficients ri, j which can be expressed as

ri, j = cov(ui , u j )

σiσ j
≈ Pi, j√

Pi,i
√

Pj, j
(20)

where σi , σ j denote the standard deviations of the measurement errors and Pi, j ’s are
the elements of the matrix

Pi, j = [XT (ũ)X(ũ) + γ I]−1
i, j (21)

A knowledge of the values of the correlation coefficients obtained for various times
tf of an experiment duration is essential for a stage of experiment planning, but it is
not a subject of this paper.

To estimate the quality of the iterative procedure (Eq. 19) used for simultaneous
identification of the thermal conductivity �(T ) and the asymmetry parameter g, the
following measures were accepted:

– measure of difference between the exact �̂(T ) and estimated �̃(T ) values of the
thermal conductivity

d(�, Tmin, Tmax) =
Tmax∫

Tmin

∣∣∣(�̃(T ) − �̂(T )

∣∣∣dT (22)

– confidence intervals for the estimated parameters at a 99 % confidence level (assum-
ing that the measurement errors are normally distributed random variables with
zero mean and unit standard deviation)

ûi − 2.576σi ≤ ũi ≤ ûi + 2.576σi , i = 0, 1, . . . , K + 1 (23)

3 Numerical Treatment

The thermal conductivity to be identified �(T ) has been derived from the literature
[10,12]. Its thermal characteristics is given in the form,
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�̂(T ) = 2.572 × 10−4T 0.81 + 5.27 × 10−5ρ0.91(1 + 0.0013T ) (24)

which describes the heat transfer due to conduction in fibrous insulation made of silica
fibers and air. On the other hand, the exact value of the asymmetry parameter has been
accepted as ĝ = 0.4.

3.1 Solution of the Energy Equation

To solve the energy equation, the finite volume method (FVM) was used. Based on
the discretization grid ωh

ωh =
{
(xi , tn) : xi = i�x, tn = n�t,

�x = E/(N x + 1),�t = tf/Nt, i = 0, N x + 1, n = 0, Nt
}

(25)

the energy equation can be expressed as

ρcp
T n+1

i − T n
i

�t
= �i+1/2

T n+1
i+1 − T n+1

i

(�x)2 − �i−1/2
T n+1

i − T n+1
i−1

(�x)2 + (Sr)
n+1
i ,

i = 1, N x, n = 0, Nt − 1 (26)

where

T n
i = T (xi , tn), �i+1/2 = 0.5(�(T n+1

i ) + �(T n+1
i+1 )), �i−1/2 = 0.5(�(T n+1

i )

+ �(T n+1
i−1 )), (Sr)

n+1
i = −(dqr/dx)n+1

i (27)

and is subject to the following initial conditions,

T 0
i = T0, i = 0, N x + 1 (28)

and boundary conditions,

�1/2
T n+1

1 − T n+1
0

�x
= (ρcp)

T n+1
0 − T n

0

�t

�x

2
+ h1(T

n+1
0 − Tg1)

+
λ=100 µm∫
λ=5 µm

ε1π Ib,λ(T
n+1
0 − Tg1)dλ

(29)

+ (1 − ε1)

λ=100µm∫
λ=5µm

π Ib,λ (T = 400 K)dλ, n = 0, Nt − 1

−�N x+1/2
T n+1

N x+1 − T n+1
N x

�x
= (ρcp)

T n+1
N x+1 − T n

N x+1

�t

�x

2
, n = 0, Nt − 1 (30)
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3.2 Solution of RTE

A finite difference method (FDM) and DOM applied by Asllanaj et al. [12] to solve
RTE, which is a coupled system of nonlinear integro-differential equations with respect
to the spectral intensity Iλ(x, µ, t) and temperature T (x, t), was used here to find the
source term Sr . One can find the details in [12–14], and there is no need to repeat them
here. However, the boundary conditions for the intensity accepted in this paper differ
from those given in [12], so the current system of equations has the form,

Gλ · Iλ = Fλ (31)

where Gλ is a square matrix of dimension (N x + 2) × (N x + 2) with elements,

Gλ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G6
λ

−G6
λ G1

λ G4
λ G5

λ−I G2
λ I 0

. . . . . . . .

. . .

−I G2
λ I

0 G6
λ G7

λ G3
λ −G5

λ

−G5
λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

Here, all the block matrixes G1
λ, G2

λ, . . . , G7
λ are the same as in [12] but only the first

and last elements of the vector Fλ are different. They are given by

F1
λ(0, µ, tn+1)

=
⎛
⎝ε1 Ib,λ(T

n+1
0 ) + τ ′ Ib,λ(T = 400 K) + 2ρd

1

m∑
k=m/2+1

Iλ(0, µk, tn+1) µkwk

⎞
⎠

·
[

I
0

]
(33)

FN x+2
λ (E, µ, tn+1)

=
⎛
⎝ε2 Ib,λ(T

n+1
N x+1) + 2(1 − ε2)

m/2∑
k=1

Iλ(E, µk, tn+1) µkwk

⎞
⎠ ·

[
0
I

]
(34)

where µk , wk are the nodes and weights of Gauss-Legendre quadrature, respectively.

4 Results of Numerical Simulations

For performing calculations, the following parameters listed in Table 1 were used.
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Table 1 Input data for numerical simulations

Thickness of the planar slab: E = 0.040 m

Density of the fibrous medium: ρ = 20 kg · m−3 and its specific heat: cp = 670 J · kg−1 · K−1

Mean absorption coefficient: σa = 711 m−1, mean scattering coefficient: σs = 1861 m−1

Refractive index: n = 1.0

Transmissivity within the spectral range [1 µm, 5 µm]: τ ′ = 0.05

Heat transfer coefficients: h1 = 5 W · m−2 · K−1, h2 = 0 W · m−2 · K−1

Initial temperature: T0 = 300 K, and surroundings temperature Tg1 = 300 K

Spectral range λ ∈ [1, 5] ∪ (5, 100]µm

Number of spatial intervals: (Nx + 1) = 20 with equal lengths �x = 0.002 m

Number of time intervals: Nt = 100 or Nt = 200 with equal lengths �t = 0.2 s

Number of discrete angular directions: m = 8

Time of heating: th = 3.0 s and final time: tf = 20.0 s or tf = 40.0 s

Number and location of the measuring points: NMP = 4, yi ∈ {2.0, 10.0, 20.0, 32.0} mm

Number of unknown parameters: (K + 1) = 4 or (K + 1) = 3

Initial estimated values of unknown parameters: ũ(0) = [10−2, 10−4, 10−6; 0.3] or ũ(0)

= [10−2, 10−4; 0.3]
Magnitude of disturbance of measuring temperatures: Z AB ∈ {0.01, 0.05, 0.10}

The simulated temperature responses Yi (tn) at the given locations {y1, y2, y3, y4}
are obtained by adding normally distributed errors N (0, 1) to the exact solutions of
the boundary-value problem given by Eqs. 1–10 as

Yi (tn) = Ŷi (tn) + Z AB · N (0, 1), i = 1, 2, . . . , NMP; n = 1, 2, . . . , Nt

(35)

where ZAB is the standard deviation of measured temperatures.
The transient solution of DP (Eqs. 1–10) for the exact data at the given locations yi

is shown in Fig. 2, and the temperature distributions within the medium for the times
t = 8 s, t = 20 s, and t = 40 s are shown in Fig. 3. The reduced sensitivity coefficients,
defined as

X̄in j = ũi
∂Tcal(xi , tn; ũT )

∂ ũi
,

i = 1, 2, . . . , NMP; n = 1, 2, . . . , Nt; j = 0, 1, . . . , (K + 1) (36)

are presented in Fig. 4 for the case of linear dependence of the thermal conductivity
�(T ) on temperature.

One can observe in Fig. 4 that the largest value of the reduced sensitivity coefficient
at the location y1 is achievable at the end of heating (t = 3 s) for the first of the esti-
mated parameters �0 and then for the second one �1. The correlation coefficients ri j ,
calculated from Eq. 20, where, e.g., r12 denotes the measure of strength of the linear
dependence between the first ũ0 = �0 and the second of the estimated parameters
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Table 2 Results of parameter estimation (in brackets just after the sign ± are given the width of the
confidence intervals of the estimated parameters, the exact asymmetry parameter g = 0.4)

Z AB = 0.01: �0 = (0.5260×10−2±0.2276×10−2), �1 = (0.7119×
10−4 ±0.6179×10−5), g = (0.4030±0.6152×10−2)

Z AB = 0.05: �0 = (0.9722×10−2±0.1245×10−1), �1 = (0.5894×
10−4 ±0.3381×10−4), g = (0.3888±0.3409×10−1)

Z AB = 0.10: �0 = (−0.1293×10−1±0.5537×10−1), �1 = (0.1203
×10−3±0.1500 × 10−3), g = (0.4514 ± 0.1376)

Z AB = 0.10 + appr: �0 = (0.6088×10−2±0.6318×10−2), �1 = (0.6882×
10−4 ±0.1715×10−4), g = (0.4038±0.1719×10−1)

d(�, 300, 345; Z AB = 0.01) = 0.2433, d(�, 300, 345; Z AB = 0.05) = 7.1057,

d(�, 300, 345; Z AB = 0.10) = 181.2888, d(�, 300, 345; Z AB = 0.10 + appr.) = 1.8181
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Fig. 5 Results of estimation of the thermal conductivity �(T )

ũ1 = �1, etc., are equal to r12 = −0.9999, r13 = −0.9581, and r23 = +0.9584,
respectively. One can draw a conclusion that all of the estimated parameters are highly
correlated to each other. In this case, the linear dependence of the thermal conductivity
�(T ) on temperature, i.e., �(T ) = �0 + �1T , is the highest order of polynomial
representation of the thermal-conductivity dependence on temperature which can be
taken into account using the estimating procedure (Eq. 19). In Table 2, the results of
numerical estimation are given for various values of the parameter ZAB.

In Table 2, the abbreviation “appr.” means that the simulated temperature responses
Yi (tn) were smoothed numerically using the double precision procedures DCSSCV
and DCSVAL derived from the IMSL numerical library [15]. The results of parameter
estimation are presented graphically in Fig. 5.

5 Conclusions

The inverse problem of simultaneous identification of the temperature-dependent ther-
mal conductivity and the asymmetry parameter g of the Henyey–Greenstein scattering
phase function has been solved numerically for the case of transient one-dimensional
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heat transfer in a plane-parallel grey participating medium. The problem has been
formulated for a more general case in which the monochromatic optical properties of
the medium can be used. The obtained results of calculation allow one to draw the
following conclusions:

– Simultaneous identification of the thermal conductivity �(T ) and the asymmetry
parameter g of the Henyey–Greenstein phase function for a transient conductive–
radiative heat transfer problem is possible by using an inverse method.

– Identification of the thermal conductivity temperature dependence �(T ) is possi-
ble by assuming only a linear form �(T ) = �0 + �1T due to high correlation
between the coefficients �0 and �1 (Table 2).

– Initial smoothing of measuring temperatures by cubic splines using the cross-val-
idation method to estimate the smoothing parameter (IMSL procedures DCSSCV
and DCSVAL) is recommended if the measurement errors are greater than 0.1 K.
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